Present Bias I

EC895; Fall 2022

Prof. Ben Bushong
Last updated September 14, 2022

Today

Our Outline:

(1) The Standard Model
(2) A Model of Present Bias
(3) Procrastination
(4) Evidence of Present Bias

from (Samuelson, 1937)

Exponential discounting
When a person receives utility at different points in time, she seeks to maximize her intertemporal utility.

$$
U \equiv u_{1}+\delta u_{2}+\delta^{2} u_{3}+\ldots+\delta^{T-1} u_{T}
$$

or put another way:

$$
=\sum_{t=1}^{T} \delta^{t-1} u_{t}
$$

- u_{t} is her instantaneous utility in period t (or her "well-being" in period t).
- δ is her discount factor, where $\delta \in(0,1]$.

What are some of the implied assumptions of this model?

- Consumption independence
- Stationary instantaneous utility
- Independence of discounting from consumption
- Constant discounting and time consistency

Is this realistic?

Empirical question: How do people weight utility now vs slightly later vs even later?

A common technique: Calibration exercise. (Here, magnitudes don't fit with intuition, as we'll see)

- Evidence of systematic "preference reversals"
- (Sometimes) demand for commitment

A Calibration Argument

If we discount utils tomorrow by 1%,

- then the one-year discount factor is $.99^{365}$.
- 100 utils in 1 year are worth 2.6 utils today.
- 100 utils in 10 year are worth 1×10^{-14} utils today.

If we discount utils in a year by 5%,

- then the one-day discount factor is $0.95^{1 / 365}$.
- 100 utils tomorrow are worth 99.99 utils today.

Something here seems amiss.

Diminishing Impatience

(Thaler, 1981a):
"What amount of money in one month / one year / ten years would make you indifferent to receiving $\$ 15$ now?

Finding: the implicit (annual) discount rate decreases in time horizons.

- 345 percent over one-month horizon
- 120 percent over one-year horizon
- 19 percent over ten-year horizon

Diminishing Impatience

General pattern of diminishing impatience well-replicated.

(Frederick, Loewenstein, and O'Donoghue, 2002) Figure 1a: Discount Factor as a Function of Time Horizon (all studies)

People's time preferences (predictably) change over time.
Asking today:

- Do you prefer $\$ 50$ today or $\$ 60$ tomorrow?
- Do you prefer $\$ 50$ in 30 days or $\$ 60$ in 31 days?

Asking in 30 days:

- Do you prefer $\$ 50$ today or $\$ 60$ tomorrow?
- Do you prefer $\$ 50$ in 30 days or $\$ 60$ in 31 days?

The quasi-hyperbolic discount function as in Phelps and Pollak (1968), O'Donoghue and Rabin (1999), and Laibson (1997):

$$
D(\tau)= \begin{cases}1 & \text { if } \tau=0 \\ \beta \cdot \delta^{\tau} & \text { if } \tau \in\{1,2, \ldots\}\end{cases}
$$

where $\beta \leq 1$

- We can then write the utility function as:

$$
U^{t}=u_{t}+\beta \sum_{\tau=1}^{T-t} \delta^{\tau} u_{t+\tau}
$$

Visualizing Discount Functions

Comparison of exponential, hyperbolic, and quasi-hyperbolic discount functions; from Angeletos, Laibson, Repetto, Tobacman, and Weinberg (2001a).

Discount function for $\beta=1 / 2$ and $\delta \simeq 1$:

$$
\begin{aligned}
D(\tau) & =1, \beta \delta, \beta \delta^{2}, \beta \delta^{3}, \ldots \\
& =1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots
\end{aligned}
$$

Relative to present period, all future periods worth less (weight 1/2).

- All discounting takes place between the present and the immediate future.
- In the long-run, we are relatively patient: utils in a year are just as valuable as utils in two years.
\Rightarrow Decisions are sensitive to the timing of benefits and costs.

Intuitive Examples

Leisure goods: immediate rewards with delayed costs.

Eating candy

- Immediate utility benefits $B_{\text {PLEASURE }}=2$
- Delayed health costs $C_{\text {HEALTH }}=3$
- (Let $\beta=1 / 2$ and $\delta=1$.)

Planning not to eat candy next week:

$$
\beta \cdot\left(B_{\text {PLEASURE }}-C_{\text {HEALTH }}\right)=\frac{1}{2} \cdot(2-3)<0
$$

...but eating candy today:

$$
B_{\mathrm{PLEASURE}}-\beta \cdot C_{\mathrm{HEALTH}}=2-\frac{1}{2} \cdot 3>0
$$

\Rightarrow Over-consume leisure goods relative to long-run plans

Intuitive Examples

Investment goods: immediate costs with delayed rewards.

Going to the gym

- Immediate effort costs $C_{\text {EFFORT }}=2$
- Delayed health benefits $B_{\text {HEALTH }}=3$
- (Continue with $\beta=1 / 2$ and $\delta=1$).

Planning to go to the gym next week:

$$
\beta \cdot\left(-C_{\mathrm{EFFORT}}+B_{\mathrm{HEALTH}}\right)=\frac{1}{2} \cdot(-2+3)>0
$$

...but not going going today:

$$
-C_{\mathrm{EFFORT}}+\beta \cdot B_{\mathrm{HEALTH}}=-2+\frac{1}{2} \cdot 3<0
$$

\Rightarrow Under-consume investment goods relative to long-run plans

Might a person with present bias:

- Build up $\$ 5,000$ of debt on a credit card at 20% interest? Yes.
- Take out a home equity loan at 5% interest requiring three hours of paperwork and a two-week processing delay? I'll do it next week.
- Take out a home equity loan at 10% interest, pre-approved with no paperwork required? Yes.
- Buy a new car, making $\$ 4,000$ down-payment? No thanks.
- Buy a new car, without a down-payment? Ooh.

Doing it Now or Later

(Courtesy of Matthew Rabin) Suppose there is a task that you must complete on one of the next four days.

To complete this task, you incur costs as follows:

- If you complete the task in period 1, the cost is 3.
- If you complete the task in period 2 , the cost is 5 .
- If you complete the task in period 3 , the cost is 8 .
- If you complete the task in period 4, the cost is 13 .

Suppose there is no reward, that you value costs linearly, and that you have $\beta=1 / 2$ and $\delta=1$.

A critical issue: Are you aware of your future self-control problems (or your future present bias)?

Note that your period-1 preferences are:

$$
(\text { period } 2) \succ(\text { period } 1) \succ(\text { period } 3)
$$

while your period-2 preferences are:

$$
(\text { period } 3) \succ(\text { period } 2)
$$

If you were asked to commit yourself in period 1, you'd commit yourself to do the task in period 2.

Suppose instead that in period 1 you only choose whether or not to do the task then. Then your choice will depend on what you expect to do in period 2 (if you were to wait).

Two extreme assumptions about people's awareness of their own future selfcontrol problems:

Sophisticates are fully aware of their future self-control problems and thus correctly predict future behavior. To solve for sophisticates:

- Treat each period-self as a separate agent, and solve for the subgameperfect Nash equilibrium to the game played between these agents (using backward induction).
- Sophisticates always stick to their plans.

Naifs are fully unaware of their future self-control problems and thus expect to behave in future exactly as they currently would like themselves to behave in future. To solve for naifs:

- Each period, derive the optimal lifetime path, and follow this period's component. But when next period arrives, reassess this plan.
- Obviously: Naifs may not stick to their plans.
(also known as Fibonacci's Fine Arts Cinema; thanks Matthew).
- Week 1: mediocre movie, 3 utils
- Week 2: good movie, 5 utils.
- Week 3: great movie, 8 utils.
- Week 4: Moonfall (obviously the best movie ever), 13 utils.

Assume $\delta=1, \beta=\frac{1}{2}$.
Suppose you must miss one movie, and thus get o utils that day.

Doing it Now or Later

Your (cinematic) life choices are $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=$.
-Choose $(0,5,8,13)$ or $(3,0,8,13)$ or $(3,5,0,13)$ or $(3,5,8,0)$.
Rules: You cannot commit to which movie to miss. You must decide incrementally each week whether to see that movie or skip it. (This assumption matters.)

What movie should you miss?
What movie will you miss?

Doing it Now or Later

Have to consider two cases: naive vs sophisticated decision-maker.
Case 1: What will a sophisticate do?

- Because $8+\frac{1}{2} 0>0+\frac{1}{2} 13$, the sophisticate won't skip Week 3.
- Because $0+\frac{1}{2}(8+13)>5+\frac{1}{2}(8+0)$, the sophisticate will skip Week 2 (if she has not already skipped Week 1).
- Because $3+\frac{1}{2}(0+8+13)>0+\frac{1}{2}(5+8+13)$, the sophisticate won't skip Week 1.

Case 2: What will a naif do?

- Because $3+\frac{1}{2}(0+8+13)>0+\frac{1}{2}(5+8+13)$, won't skip Week 1 .
- Because $5+\frac{1}{2}(0+13)>0+\frac{1}{2}(8+13)$, won't skip Week 2.
- Because $8+\frac{1}{2} 0>0+\frac{1}{2} 13$, the naif won't skip Week 3 .

Note that even given $\beta=\frac{1}{2}$, all four selves agree that missing the moon literally fall into the earth is a bad thing to happen. Yet the naif does so.

Doing it Now or Later

Calibrational exercise: Let us see what we would infer from the observed behavior if we were an anachronistic economist who believed in $\beta=1$.

An exponential discounter would have to have a weekly discount factor $\tilde{\delta} \leq \operatorname{Min}\left[\sqrt[3]{\frac{3}{13}}, \sqrt[2]{\frac{5}{13}}, \frac{8}{13}\right] \approx .61$ to be willing to miss that gem of a film.

	Letting $\beta<1$	Insisting $\beta=1$
Week 1 weight on u_{2} vs. u_{1}	.61	.61
Week 1 weight on u_{4} vs. u_{1}	.61	.23

Procrastination: Doing It . . . Tomorrow

Procrastination involves the immediate gratification of not doing something optimally onerous

- Often the main "cost" of doing some beneficial task is primarily the opportunity cost of doing something gratifying.
- Procrastination is in fact a wonderful vice: You can, and ideally should do it concurrently with other vices!
- Note: quitting smoking, etc. qualitatively similar to procrastination.

But what is it?

- Not just delaying unpleasant tasks, which is often right thing to do.
- It is delaying beyond when you yourself want to complete them.

Suppose that, with 120 minutes of effort today, you could reduce the effort by 10 minutes needed to undertake a task every day for rest of your life.
E.g., learn some short cuts or tricks with your word-processing package, or "fix" some annoying problem in the current user set-up.

- So, within 2 weeks, you will on net save time. In a year, 58 hours, and in a decade, 600 hours.
- Suppose that value of time the same each day. No deadlines, no commitment devices.
- Do you do the task? If so, when?

If do the task today your intertemporal well-being is:

$$
\begin{aligned}
U^{t}=-120 & +\beta \delta \cdot 10+\beta \delta^{2} \cdot 10+\beta \delta^{3} \cdot 10+\ldots \\
& =-120+\beta \frac{\delta}{1-\delta}^{10}
\end{aligned}
$$

...relative to the utility of doing nothing.

Suppose time consistent, no taste for immediate gratification.
E.g., $\beta=1, \delta=.999$. Then:

$$
\begin{gathered}
U^{t}(\text { fix today })=-120+\frac{.999}{1-.999} 10=9,870 \\
U^{t}(\text { fix tomorrow })=.999\left(-120+\frac{.999}{1-.999} 10\right)=9,861 \\
U^{t}(\text { fix next day })=.999^{2}\left(-120+\frac{.999}{1-.999} 10\right)=9,852
\end{gathered}
$$

...and so on

$$
U^{t}(\text { never })=0
$$

So: Person will do it right away.

The Fundamental Theorem of Time-Consistent Task-Assessment in Stationary Environments:

- $U^{t}($ today $) \succ$
- $U^{t}($ tomorrow $) \succ$
-... \succ
- $U^{t}(n e v e r)$
or
- $U^{t}($ never $) \succ$
- ... \succ
- $U^{t}($ tomorrow $) \succ$
- $U^{t}(t o d a y)$.

Relationship to Procrastination

This is the combination we are interested in:

- $U^{t}($ today $) \succ U^{t}($ never $)$, but $U^{t}($ tomorrow $) \succ U^{t}($ today $)$.

This would never happen for a time-consistent person, by the FT-TC-TASE.

- In a stochastic or non-stationary environment, could be that a TC person happens to not want to do it today
- But the systematic congruence of these two inequalities is the feature of interest for present bias.

If a task is worth doing, it is worth doing right away.

- Day-to-day variation in opportunity cost, etc., then there may be particular reason to do tomorrow than today
- or today rather than tomorrow.
- But no systematic tendency to put off tasks.

Back to the Example

Suppose some taste for immediate gratification (present bias).
E.g., $\beta=.9, \delta=.999$.

$$
U^{t}(t o d a y)=-120+.9 \frac{.999}{1-.999} 10=8,871
$$

(And of course, $U^{t}($ never $)=0$)
So even with a taste for immediate gratification:

- Feels to you like you are saving about 150 hours in the future with the two hours today.
- Indeed, you would prefer doing the task today to never doing it even if it would take you 24 hours, not just 2 hours.

So...

- Do you do the task?
- If so, when?

If your choices were Today vs. Never, then you'd obviously do it today.

- But you could also plan to do the task tomorrow:

$$
U^{t}(\text { tomorrow })=.9 \cdot .999\left(-120+\frac{.999}{1-.999} 10\right)=8,874
$$

You'd prefer to learn tomorrow rather than today.

What does the agent do as a function of their beliefs about themselves?

In a related context, O'Donoghue and Rabin (2001) introduce a formal model of partial naivete

- Since β captures the magnitude of the person's self-control problem, we can think of the person as having a perception $\hat{\beta}$ of future self-control problems

1. Sophisticates have $\hat{\beta}=\beta$
2. Naifs have $\hat{\beta}=1$
3. Partial naifs have $\hat{\beta} \in(\beta, 1)$

- As before, the solution concept: subgame perfect equilibrium, assuming that all future selves behave with $\hat{\beta}$, while current self uses β.

Severe procrastination for "one-shot" tasks requires some naivety.

Why? Intuitions?

Simple style of rationality argument in economics.

- Sophisticates predict their future behavior correctly, and always have one simple action available to them ... doing the action now.
- That means their utility from their now perspective is bounded below by the utility of doing it right away.

As before, let's explore a mispecification/calibration exercise:

- A deltoid will never do task only if $-120+\frac{\delta}{1-\delta} 10 \leq 0$, so she would choose the action never do the task only if $\delta \leq \frac{12}{13} \Rightarrow \delta^{365} \leq .000000000002$.

Hence, to reconcile behavior with the exponential model if we are confident in our assessment of the disutilities of effort, we would need a yearly
$\tilde{\delta} \leq\left(\frac{12}{13}\right)^{365}=.000000000002$.
By contrast, we're explaining this with very modest (first-)yearly discounting.

Of course, effort costs probably increasing rather than linear.

- And we shouldn't assume we know utility function when inferring discount factors.

Principle: continue to take the exercise seriously.
Suppose we didn't know $\widetilde{\mu}=\frac{u(120 \text { minutes })}{u(10 \text { minutes })}$.
Exercise: What locus of ($\tilde{\delta}, \widetilde{\mu}$) would explain avoiding 2 hours of effort immediately to save 10 minutes every day rest of your life?

- This is (a little) challenging, but worth exploring for "fun". Impress your friends and neighbors!

"New" Example

Consider $\beta=.9, \delta=.999$ naif again. But now:

- Suppose that the only choice available is a "quick fix": 1 minute of effort today $\Longrightarrow 9 \frac{1}{2}$ minutes saved each day forever.
- Would she do this? If so, when?

$$
\begin{aligned}
U^{t}(\text { today }) & =-1+.9 \frac{.999}{1-.999} 9.5=8540 \\
U^{t}(\text { tomorrow }) & =.9 \cdot .999\left(-1+\frac{.999}{1-.999} 9.5\right)=8532
\end{aligned}
$$

Now suppose both the 120/10 task and 1/9.5 task are available.
Assume could do both sequentially, but don't save time on days when fixing.
The naif will compare her four choices:

- U^{t} (quick fix today) $=8540$
- $U^{t}($ quick fix tomorrow $)=8532$
- $U^{t}($ full fix today $)=8871$
- $U^{t}($ full fix tomorrow $)=8874$

So she'll perpetually plan to do the full fix tomorrow. And meanwhile she will never do either of them.

The unfortunate guiding credo of the naif:
If you are going to do something, do it right . . . tomorrow.

Somebody who is unwilling to take 120 minutes of effort to save 10 minutes or to take 1 minute of effort to save $9 \$ \backslash$ frac $\{1\}\{2] \$$ minutes every day for the rest of her life seems, interpreted through the lens of exponential discounting, as if she is discounting at rate of

$\tilde{\delta}_{\text {yearly }}<.000000000000000000000000000000$ 000000000000000000000000000000 000000000000000000000000000000 00000000001.

Acknowledging the possibility that $\beta<1, \hat{\beta}>\beta$ reconciles such behavior to reasonable long-term patience.

Cumulative Procrastination

Suppose you must read 30 pages in 30 days. That is, $\sum_{t=1}^{30} p_{t} \geq 30$. If you spend h_{t} hours reading on day t, then $u_{t}=-h_{t}$, and get $p_{t}=\sqrt{h_{t}}$ pages read.

Key feature: It is more efficient to spread out work regularly rather than doing it all in the space of a few days.

- (Other models with this qualitative feature would yield similar results.)

Obvious solution for deltoid If $\delta=\beta=\widehat{\beta}=1, p_{t}=h_{t}=1$ for all t.

April is the Cruelest Month

Consider April Mae: $\delta=\widehat{\beta}=1, \beta=\frac{1}{2}$.
Day 1: April Mae will $\operatorname{Max}_{h_{1}} U^{1} \equiv-h_{1}+\frac{1}{2}\left[-29\left(\frac{30-\sqrt{h_{1}}}{29}\right)^{2}\right]$. If she reads h_{1} hours on Day 1, she'll need to read $\frac{30-\sqrt{h_{1}}}{29}$ pages each remaining day, spending $\left(\frac{30-\sqrt{h_{1}}}{29}\right)^{2}$ hours each day.

So on Day 1, April Mae reads for $15 \$ \backslash$ frac[1][2]\$ minutes (planning to read 62 minutes each of the remaining 29 days). That is, she is planning to increase future h by 58 minutes to decrease h today by 45 minutes.

Day 2: Day 2: $\operatorname{Max}_{h_{2}} U^{2} \equiv-h_{2}+\frac{1}{2}\left[-28\left(\frac{29.5-\sqrt{h_{2}}}{28}\right)^{2}\right]$. That is, on Day 2: April Mae reads for 16 minutes (and plans to read 64 minutes each day from now on).

April is the Cruelest Month

Day 3: ...reads 17 minutes ... (and plans for 67 minutes each remaining day).
Day 10: ... 22 minutes (and ... 90 minutes ...).
With a week left: Has read 16 pages in 11 hours.
Day 24: 72 minutes (and ... more than 4 hours ...).
Day 30: April Mae reads for $23 \$ \backslash$ frac[3/34]\$ hours.

Is the previous example misleading?

Put another way: Present bias leads us to do things last minute. In line with procrastination, people often complete tasks last minute. For example:

- Parking tickets (Heffetz et al., 2016); health care plan choice (Brown and Previtero, 2018); taxes (Martinez et al., 2017); patent officers' fillings (Frakes and Wasserman, 2016)

A natural idea: if task completion is driven by the tendency to procrastinate, use data on task completion to identify time preference.
"Common wisdom" (as n Frakes and Wasserman, 2016): observed bunching at the deadline is evidence of time-inconsistency.

Implicit argument: inconsistent with $\delta \approx 1$.
Suppose an analyst observes a sequence of actions over a month. Can the analyst conclude with any confidence that the person suffers (naive) present bias?

Think of preparing your taxes or paying a parking ticket.
-The agent needs to complete the task before the deadline T.
-If she did not complete the task by the end of period T, the agent gets a penalty of $\frac{y}{(\beta \delta)} \leq 0$ in period $T+1$

- So y is the period-\$T\$ continuation value when not having done the task.

In every period $t \leq T$, the instantaneous utility of completing the task is drawn independently from a given payoff distribution F.

- Think of this as the instantaneous benefit of completing the task net of opportunity costs.
- Assume F is known to the agent.
- Instantaneous utility of not doing the task is normalized to zero.

Identifying Present Bias

The analyst can observe agent's stopping probabilities at every point in time.

Either observes infinitely many homogeneous agents,

- or the same agent infinitely many times.
- Obviously homogeneity facilitates identifying time preferences.

It is known that opportunity costs are drawn independently from a given stationary distribution.

- (Otherwise can rationalize any data by assuming cost are either one or zero, with the probability that they are zero being equal to a period's stopping probability.)
- Stationarity is a natural starting point.

Identifying Present Bias

Red bar plot: time-consistent agent with log-normally distributed cost (\$ $\$ \mathrm{mu}=1 \$$ and variance $\eta=1$)

Blue bar plot: sophisticated time-inconsistent agent with $\beta=0.7$ and parameters $\mu=0, \eta=2.3$.

from Heidhues and Strack (2021)

Despite strong stationary, homogeneity, and observability assumptions, and restriction to quasi-hyperbolic discounting:

Both, the degree of present bias as well as the discount factor are, for any data set of stopping times not identifiable.

- Importantly, present bias parameter is unidentified even when fixing the longrun discount factor.
- Naivite vs sophistication are also not identifiable.
- With a stationary net-benefit distribution, a hyperbolic discounter never sets an earlier deadline.

Coming Soon

Next time: real evidence of present bias.
Please read:

1. DellaVigna and Malmendier (2006): "Paying Not To Go To the Gym" and
2. Kaur, Kremer, and Mullainathan (2015): "Self-Control at Work"
